Exercise 5

Evaluate both sides of Eq. A.5-2 for the function $s(x, y, z)=x^{2}+y^{2}+z^{2}$. The volume V is the triangular prism lying between the two triangles whose vertices are $(2,0,0),(2,1,0),(2,0,3)$, and $(-2,0,0),(-2,1,0),(-2,0,3)$.

Solution

Eq. A.5-2 is the divergence theorem for scalars (as opposed to vectors),

$$
\iiint_{V} \nabla s d V=\oiint_{S} \mathbf{n} s d S
$$

where V is a closed volume and \mathbf{n} is a unit vector normal to its surface in the outward direction.

Figure 1: Schematic of the triangular prism with the given vertices.

The Left-hand Side

$$
\begin{aligned}
\iiint_{V} \nabla s d V & =\iiint_{V} \nabla\left(x^{2}+y^{2}+z^{2}\right) d V \\
& =\iiint_{V}\left(2 x \boldsymbol{\delta}_{x}+2 y \boldsymbol{\delta}_{y}+2 z \boldsymbol{\delta}_{z}\right) d V \\
& =\int_{-2}^{2} \int_{0}^{1} \int_{0}^{3(1-y)}\left(2 x \boldsymbol{\delta}_{x}+2 y \boldsymbol{\delta}_{y}+2 z \boldsymbol{\delta}_{z}\right) d z d y d x \\
& =\left.\int_{-2}^{2} \int_{0}^{1}\left(2 x z \boldsymbol{\delta}_{x}+2 y z \boldsymbol{\delta}_{y}+z^{2} \boldsymbol{\delta}_{z}\right)\right|_{0} ^{3(1-y)} d y d x \\
& =\int_{-2}^{2} \int_{0}^{1}\left[6 x(1-y) \boldsymbol{\delta}_{x}+6 y(1-y) \boldsymbol{\delta}_{y}+9(1-y)^{2} \boldsymbol{\delta}_{z}\right] d y d x \\
& =\left.\int_{-2}^{2}\left[6 x\left(y-\frac{y^{2}}{2}\right) \boldsymbol{\delta}_{x}+6\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right) \boldsymbol{\delta}_{y}+9\left(y-y^{2}+\frac{y^{3}}{3}\right) \boldsymbol{\delta}_{z}\right]\right|_{0} ^{1} d x \\
& =\int_{-2}^{2}\left(3 x \boldsymbol{\delta}_{x}+\boldsymbol{\delta}_{y}+3 \boldsymbol{\delta}_{z}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
\iiint_{V} \nabla s d V & =\left.\left(3 \frac{x^{2}}{2} \boldsymbol{\delta}_{x}+x \boldsymbol{\delta}_{y}+3 x \boldsymbol{\delta}_{z}\right)\right|_{-2} ^{2} \\
& =0 \boldsymbol{\delta}_{x}+4 \boldsymbol{\delta}_{y}+12 \boldsymbol{\delta}_{z}
\end{aligned}
$$

The Right-hand Side

The triangular prism has five faces, so the closed surface integral will split up into five double integrals.

Figure 2: Schematic of the triangular prism with labeled faces.

$$
\oiint_{S} \mathbf{n} s d S=\iint_{S_{1}} \mathbf{n} s d S+\iint_{S_{2}} \mathbf{n} s d S+\iint_{S_{3}} \mathbf{n} s d S+\iint_{S_{4}} \mathbf{n} s d S+\iint_{S_{5}} \mathbf{n} s d S
$$

The outward unit vector normal to S_{1} is $\boldsymbol{\delta}_{x}$, the outward unit vector normal to S_{2} is $-\boldsymbol{\delta}_{x}$, the outward unit vector normal to S_{3} is $-\boldsymbol{\delta}_{z}$, the outward unit vector normal to S_{4} is $-\boldsymbol{\delta}_{y}$, and the outward unit vector normal to S_{5} is $0 \boldsymbol{\delta}_{x}+3 \boldsymbol{\delta}_{y}+\boldsymbol{\delta}_{z}$ divided by its magnitude.

$$
\oiint_{S} \mathbf{n} s d S=\iint_{S_{1}} \boldsymbol{\delta}_{x} s d S+\iint_{S_{2}}\left(-\boldsymbol{\delta}_{x}\right) s d S+\iint_{S_{3}}\left(-\boldsymbol{\delta}_{z}\right) s d S+\iint_{S_{4}}\left(-\boldsymbol{\delta}_{y}\right) s d S+\iint_{S_{5}} \frac{3 \boldsymbol{\delta}_{y}+\boldsymbol{\delta}_{z}}{\sqrt{3^{2}+1^{2}}} s d S
$$

The double integrals over S_{1} and S_{2} will be in $d y$ and $d z$, the double integrals over S_{3} and S_{5} will be in $d x$ and $d y$, and the double integral over S_{4} will be in $d x$ and $d z$.

$$
\begin{aligned}
\oiint_{S} \mathbf{n} s d S=\int_{0}^{1} \int_{0}^{3(1-y)} \boldsymbol{\delta}_{x} s d z d y & +\int_{0}^{1} \int_{0}^{3(1-y)}\left(-\boldsymbol{\delta}_{x}\right) s d z d y+\int_{-2}^{2} \int_{0}^{1}\left(-\boldsymbol{\delta}_{z}\right) s d y d x \\
& +\int_{-2}^{2} \int_{0}^{3}\left(-\boldsymbol{\delta}_{y}\right) s d z d x+\int_{-2}^{2} \int_{0}^{1} \frac{3 \boldsymbol{\delta}_{y}+\boldsymbol{\delta}_{z}}{\sqrt{3^{2}+1^{2}}} s\left(\sqrt{3^{2}+1^{2}}\right) d y d x
\end{aligned}
$$

Factor out the unit vectors and bring the constants in front.

$$
\begin{aligned}
& \oiint_{S} \mathbf{n} s d S=\boldsymbol{\delta}_{x}[\underbrace{\int_{0}^{1} \int_{0}^{3(1-y)} s d z d y}_{S_{1}}-\underbrace{\int_{0}^{1} \int_{0}^{3(1-y)} s d z d y}_{S_{2}}] \\
&+\boldsymbol{\delta}_{y}[-\underbrace{\int_{-2}^{2} \int_{0}^{3} s d z d x}_{S_{4}}+3 \underbrace{\int_{-2}^{2} \int_{0}^{1} s d y d x}_{S_{5}}] \\
&+\boldsymbol{\delta}_{z}[-\underbrace{\int_{-2}^{2} \int_{0}^{1} s d y d x}_{S_{3}}+\underbrace{\int_{-2}^{2} \int_{0}^{1} s d y d x}_{S_{5}}]
\end{aligned}
$$

On $S_{1}, x=2$; on $S_{2}, x=-2$; on $S_{3}, z=0$; on $S_{4}, y=0$; and on $S_{5}, z=3-3 y$.

$$
\begin{aligned}
\oiint_{S} \mathbf{n} s d S=\boldsymbol{\delta}_{x} & {\left[\int_{0}^{1} \int_{0}^{3(1-y)}\left(2^{2}+y^{2}+z^{2}\right) d z d y-\int_{0}^{1} \int_{0}^{3(1-y)}\left[(-2)^{2}+y^{2}+z^{2}\right] d z d y\right] } \\
& +\boldsymbol{\delta}_{y}\left[-\int_{-2}^{2} \int_{0}^{3}\left(x^{2}+0^{2}+z^{2}\right) d z d x+3 \int_{-2}^{2} \int_{0}^{1}\left[x^{2}+y^{2}+(3-3 y)^{2}\right] d y d x\right] \\
& +\boldsymbol{\delta}_{z}\left[-\int_{-2}^{2} \int_{0}^{1}\left(x^{2}+y^{2}+0^{2}\right) d y d x+\int_{-2}^{2} \int_{0}^{1}\left[x^{2}+y^{2}+(3-3 y)^{2}\right] d y d x\right]
\end{aligned}
$$

The integrands of the first two double integrals are the same, so the integrals cancel.

$$
\begin{aligned}
\oiint_{S} \mathbf{n} s d S=0 \boldsymbol{\delta}_{x}+\boldsymbol{\delta}_{y} & {\left[-\left.\int_{-2}^{2}\left(x^{2} z+\frac{z^{3}}{3}\right)\right|_{0} ^{3} d x+\left.3 \int_{-2}^{2}\left[x^{2} y+\frac{y^{3}}{3}+\left(9 y-9 y^{2}+3 y^{3}\right)\right]\right|_{0} ^{1} d x\right] } \\
+ & \boldsymbol{\delta}_{z}\left[-\left.\int_{-2}^{2}\left(x^{2} y+\frac{y^{3}}{3}\right)\right|_{0} ^{1} d x+\left.\int_{-2}^{2}\left[x^{2} y+\frac{y^{3}}{3}+\left(9 y-9 y^{2}+3 y^{3}\right)\right]\right|_{0} ^{1} d x\right]
\end{aligned}
$$

Plug in the limits and simplify.

$$
\begin{aligned}
\oiint_{S} \mathbf{n} s d S=0 \boldsymbol{\delta}_{x}+\boldsymbol{\delta}_{y}\left[-\int_{-2}^{2}\left(3 x^{2}+9\right) d x+3\right. & \left.\int_{-2}^{2}\left(x^{2}+\frac{10}{3}\right) d x\right] \\
& +\boldsymbol{\delta}_{z}\left[-\int_{-2}^{2}\left(x^{2}+\frac{1}{3}\right) d x+\int_{-2}^{2}\left(x^{2}+\frac{10}{3}\right) d x\right]
\end{aligned}
$$

Evaluate the single integrals.

$$
\oiint_{S} \mathbf{n} s d S=0 \boldsymbol{\delta}_{x}+4 \boldsymbol{\delta}_{y}+12 \boldsymbol{\delta}_{z}
$$

We conclude that the divergence theorem for scalars is verified.

