Exercise 5

Evaluate both sides of Eq. A.5-2 for the function $s(x, y, z) = x^2 + y^2 + z^2$. The volume V is the triangular prism lying between the two triangles whose vertices are (2, 0, 0), (2, 1, 0), (2, 0, 3), and (-2, 0, 0), (-2, 1, 0), (-2, 0, 3).

Solution

Eq. A.5-2 is the divergence theorem for scalars (as opposed to vectors),

$$\iiint_V \nabla s \, dV = \oiint_S \mathbf{n} s \, dS,$$

where V is a closed volume and \mathbf{n} is a unit vector normal to its surface in the outward direction.

Figure 1: Schematic of the triangular prism with the given vertices.

The Left-hand Side

$$\begin{split} \iiint_{V} \nabla s \, dV &= \iiint_{V} \nabla (x^{2} + y^{2} + z^{2}) \, dV \\ &= \iiint_{V} (2x \delta_{x} + 2y \delta_{y} + 2z \delta_{z}) \, dV \\ &= \int_{-2}^{2} \int_{0}^{1} \int_{0}^{3(1-y)} (2x \delta_{x} + 2y \delta_{y} + 2z \delta_{z}) \, dz \, dy \, dx \\ &= \int_{-2}^{2} \int_{0}^{1} (2x z \delta_{x} + 2y z \delta_{y} + z^{2} \delta_{z}) \Big|_{0}^{3(1-y)} \, dy \, dx \\ &= \int_{-2}^{2} \int_{0}^{1} [6x(1-y) \delta_{x} + 6y(1-y) \delta_{y} + 9(1-y)^{2} \delta_{z}] \, dy \, dx \\ &= \int_{-2}^{2} \left[6x \left(y - \frac{y^{2}}{2} \right) \delta_{x} + 6 \left(\frac{y^{2}}{2} - \frac{y^{3}}{3} \right) \delta_{y} + 9 \left(y - y^{2} + \frac{y^{3}}{3} \right) \delta_{z} \right] \Big|_{0}^{1} \, dx \\ &= \int_{-2}^{2} (3x \delta_{x} + \delta_{y} + 3\delta_{z}) \, dx \end{split}$$

www.stemjock.com

$$\iiint_{V} \nabla s \, dV = \left(3\frac{x^{2}}{2} \boldsymbol{\delta}_{x} + x \boldsymbol{\delta}_{y} + 3x \boldsymbol{\delta}_{z} \right) \Big|_{-2}^{2}$$
$$= 0 \boldsymbol{\delta}_{x} + 4 \boldsymbol{\delta}_{y} + 12 \boldsymbol{\delta}_{z}$$

The Right-hand Side

The triangular prism has five faces, so the closed surface integral will split up into five double integrals.

Figure 2: Schematic of the triangular prism with labeled faces.

$$\oint \int_{S} \mathbf{n}s \, dS = \iint_{S_1} \mathbf{n}s \, dS + \iint_{S_2} \mathbf{n}s \, dS + \iint_{S_3} \mathbf{n}s \, dS + \iint_{S_4} \mathbf{n}s \, dS + \iint_{S_5} \mathbf{n}s \, dS$$

The outward unit vector normal to S_1 is δ_x , the outward unit vector normal to S_2 is $-\delta_x$, the outward unit vector normal to S_3 is $-\delta_z$, the outward unit vector normal to S_4 is $-\delta_y$, and the outward unit vector normal to S_5 is $0\delta_x + 3\delta_y + \delta_z$ divided by its magnitude.

$$\oint \int_{S} \mathbf{n}s \, dS = \iint_{S_1} \boldsymbol{\delta}_x s \, dS + \iint_{S_2} (-\boldsymbol{\delta}_x) s \, dS + \iint_{S_3} (-\boldsymbol{\delta}_z) s \, dS + \iint_{S_4} (-\boldsymbol{\delta}_y) s \, dS + \iint_{S_5} \frac{3\boldsymbol{\delta}_y + \boldsymbol{\delta}_z}{\sqrt{3^2 + 1^2}} s \, dS$$

The double integrals over S_1 and S_2 will be in dy and dz, the double integrals over S_3 and S_5 will be in dx and dy, and the double integral over S_4 will be in dx and dz.

Factor out the unit vectors and bring the constants in front.

On S_1 , x = 2; on S_2 , x = -2; on S_3 , z = 0; on S_4 , y = 0; and on S_5 , z = 3 - 3y.

$$\oint_{S} \mathbf{n}s \, dS = \boldsymbol{\delta}_{x} \left[\int_{0}^{1} \int_{0}^{3(1-y)} (2^{2} + y^{2} + z^{2}) \, dz \, dy - \int_{0}^{1} \int_{0}^{3(1-y)} [(-2)^{2} + y^{2} + z^{2}] \, dz \, dy \right] \\
+ \boldsymbol{\delta}_{y} \left[-\int_{-2}^{2} \int_{0}^{3} (x^{2} + 0^{2} + z^{2}) \, dz \, dx + 3 \int_{-2}^{2} \int_{0}^{1} [x^{2} + y^{2} + (3 - 3y)^{2}] \, dy \, dx \right] \\
+ \boldsymbol{\delta}_{z} \left[-\int_{-2}^{2} \int_{0}^{1} (x^{2} + y^{2} + 0^{2}) \, dy \, dx + \int_{-2}^{2} \int_{0}^{1} [x^{2} + y^{2} + (3 - 3y)^{2}] \, dy \, dx \right]$$

The integrands of the first two double integrals are the same, so the integrals cancel.

$$\oint_{S} \mathbf{n}s \, dS = 0 \boldsymbol{\delta}_{x} + \boldsymbol{\delta}_{y} \left[-\int_{-2}^{2} \left(x^{2}z + \frac{z^{3}}{3} \right) \Big|_{0}^{3} \, dx + 3 \int_{-2}^{2} \left[x^{2}y + \frac{y^{3}}{3} + (9y - 9y^{2} + 3y^{3}) \right] \Big|_{0}^{1} \, dx \right] \\
+ \boldsymbol{\delta}_{z} \left[-\int_{-2}^{2} \left(x^{2}y + \frac{y^{3}}{3} \right) \Big|_{0}^{1} \, dx + \int_{-2}^{2} \left[x^{2}y + \frac{y^{3}}{3} + (9y - 9y^{2} + 3y^{3}) \right] \Big|_{0}^{1} \, dx \right]$$

Plug in the limits and simplify.

Evaluate the single integrals.

$$\oint \int S_{S} \mathbf{n} s \, dS = 0 \boldsymbol{\delta}_{x} + 4 \boldsymbol{\delta}_{y} + 12 \boldsymbol{\delta}_{z}$$

We conclude that the divergence theorem for scalars is verified.

www.stemjock.com